ULI New Mexico

- Shape the future of the built environment for transformative impact in communities worldwide.
- 501©(3) nonprofit research and education organization supported by its Members.
- 45,000+ Members worldwide, representing the entire spectrum of land use and real estate development disciplines working in private enterprise and public service.
- Facilitates an open exchange of ideas, information, and experience among industry leaders and policymakers dedicated to creating better places.

ABOUT ULI NEW MEXICO

Streets For All: Pedestrian & Bike Safety

Tuesday, October 1 • 5:00pm – 7:00m Central Cabana | 7915 Central Ave NE • Albuquerque, NM

sponsored by: গ্র্রি WaFd Bank

TODAYS PROGRAM

PROGRAM HOST

DIAMOND SPONSORS

SUNNY505

PLATINUM SPONSORS

GOLD SPONSORS

ULI New Mexico

PROGRAM SPONSOR

New Mexico Presents

SHARE THE AHEAD ROAD

Streets For All: Pedestrian & Bike Safety

Tuesday, October 1 5:00am – 7:00pm

Central Cabana 7915 Central Ave NE

Sponsored by

SPEAKERS

Valerie Hermanson, AICP

Vision Zero Coordinator,

City of Albuquerque

Nick Ferenchak

Associate Professor - Civil, Construction and Environmental Engineering

University of New Mexico

Streets for All: Pedestrian & Bicyclist Safety

Nick Ferenchak, PhD, PE

University of New Mexico Department of Civil, Construction & Environmental Engineering

- 1. Introduction
- 2. Central Avenue
- 3. Multimodal Safety in Context

Introduction

- Traffic Safety
- Plangineer
- PhD University of Colorado Denver
- UNM for 6 years

Center for Pedestrian and Bicyclist Safety

Education

Workforce Development

Technology Transfer

Central Avenue

Segment	Count before	Count during	Count after	Before to after change	% Change	
98th to Coors*	3.2	3.1	1.8	-1.5	-45.6	
Coors to Atrisco	4.9	3.3	2.2	-2.7	—55.I	
Atrisco to Lomas	3.3	0.7	2.6	-0.7	-20.5	
Lomas to 10th	1.2	0.6	0.0	-1.2	-100.0	
10th to 1st*	2.6	3.6	4.4	1.8	72.2	
lst to University	4.0	1.5	I.8	-2.I	-54.I	
University to Girard	3.3	1.8	0.7	-2.6	-78.5	
Girard to Carlisle	5.1	0.9	1.1	-4.0	-78.5	
Carlisle to San Mateo	3.1	1.7	0.0	-3.I	-100.0	
San Mateo to Louisiana	4.5	5.0	2.2	-2.3	-50.8	
Louisiana to Tramway*	4.6	4.0	4.0	-0.6	— I 3 .9	
ART average	3.7	1.9	1.3	-2.4	-64.9	
Control average	3.5	3.6	3.4	-0.2	-5.7	
Alternatives	1.7	1.5	1.6	-0.1	-5.9	
All of Albuquerque	36.7	31.4	29.9	-6.8	-18.4	

 Table 4.
 Fatal and Serious Injury Collisions for All Modes (Collisions per Mile/Month)

			Average Speed (mph)				85 th Percentile Speed (mph)			
		n	Before	After	Change	% Change	Before	After	Change	% Change
ART	All	94	23.5	20.3	-3.2	-13.6%	32.3	28.6	-3.7	-11.5%
	Intersections	38	23.1	19.9	-3.2	-13.9%	31.7	27.6	-4.1	-12.9%
	Mid-block	56	23.8	20.6	-3.2	-13.4%	32.6	29.3	-3.3	-10.1%
Control	All	70	27.3	24.4	-2.9	-10.6%	38.0	35.8	-2.2	-5.8%
	Intersections	22	28.6	24.9	-3.7	-12.9%	39.8	36.8	-3.0	-7.5%
	Mid-block	48	26.8	24.2	-2.6	-9.7%	37.3	35.4	-1.9	-5.1%

Table 3. Changes in motor vehicle operating speeds on Central Avenue corridor relative to BRT installation (all before/after changes were statistically significant at 95% confidence with single-tailed *t*-tests).

Table 8. Motor vehicle speeds on Central Avenue corridor by neighborhood relative to BRT (control segments highlighted in yellow).

		· · · ·								
		Average Speed (mph)			85th-Percentile Speed (mph)				_ Change in KA	
	n	Before	After	Change	% Change	Before	After	Change	% Change	Crashes
Westside (Control)	20	32.1	27.9	-4.2	-13.1%	44.3	40.4	-3.9	-8.8%	-40.0%
Westside Old Town West Downtown Downtown (Control)	20 10 8 4	25.7 29.0 20.5 14.5	23.1 24.7 18.3 12.5	-2.6 -4.3 -2.2 -2.0	-10.1% -14.8% -10.7% -13.8%	34.7 39.6 27.3 20.3	33.1 34.9 25.2 18.5	-1.6 -4.7 -2.1 -1.8	-4.6% -11.9% -7.7% -8.9%	69.6% 40.0% n/a 66.7%
East Downtown UNM Nob Hill Fairground Eastside (Control)	16 10 12 18 46	20.5 21.3 22.5 23.7 26.5	17.6 18.6 18.4 20.2 24.0	-2.9 -2.7 -4.1 -3.5 -2.5	-14.1% -12.7% -18.2% -14.8% -9.4%	27.3 29.5 31.8 33.6 37.0	24.6 24.5 25.8 29.2 35.4	-2.7 -5.0 -6.0 -4.4 -1.6	-9.8% -16.9% -18.9% -13.1% -4.3%	-45.0% -50.0% -83.3% -75.0% -17.3%

Multimodal Safety in Context

Taylor & Francis

Transportation Letters

The International Journal of Transportation Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ytrl20

U.S. Vision Zero Cities: modal fatality trends and strategy effectiveness

Nicholas N. Ferenchak

Traffic safety for all road users: A paired comparison study of small & mid-sized U.S. cities with high/low bicycling rates

Nicholas N. Ferenchak^{a,*,1}, Wesley E. Marshall^{b,2}

Table 3

Category 1 Mode Choice Negative Binomial Models (95% confidence in bold).

Variable	All Fatalities Mode	L		Pedestrian Fatalities Model			
	Coefficient	p-value	S.E.	Coefficient	p-value	S.E.	
Constant	-8.509	< 0.001	0.265	-9.698	< 0.001	0.396	
City Level Variables							
Bike Mode Share	-0.108	0.265	0.097	-0.217	0.206	0.172	
Pedestrian Mode Share	-0.189	0.106	0.117	-1.472	< 0.001	0.269	
SOV Mode Share	-0.065	0.680	0.157	0.515	0.046	0.300	
Transit Mode Share	-0.018	0.889	0.132	0.242	0.290	0.229	
Block Group Level Variables							
Bike Mode Share	-0.304	0.002	0.101	-0.419	0.013	0.168	
Pedestrian Mode Share	-0.257	0.042	0.126	-1.670	< 0.001	0.282	
SOV Mode Share	-0.139	0.400	0.165	0.258	0.394	0.303	
Transit Mode Share	-0.279	0.021	0.120	-0.040	0.845	0.206	

Research Road Design

Why cities with high bicycling rates are safer for all road users

Wesley E. Marshall ^a 𝔅 ⊠, Nicholas N. Ferenchak ^b ⊠

Research Road Design

Research Article

Research Article

Validation of Bicycle Level of Traffic
Stress and Perceived Safety for Children

City 100 (111776) (11270933)
City 11270933)
City 11270933
City 1127093
City 112709
City 11270
City 1

Nicholas N. Ferenchak¹ and Wesley E. Marshall²

alta

LEVEL OF TRAFFIC STRESS

Research Road Design

International Journal of Transportation Science and Technology Volume 8, Issue 2, June 2019, Pages 136-145

Advancing healthy cities through safer cycling: An examination of shared lane markings

Nicholas N. Ferenchak ^a A ⊠, Wesley E. Marshall ^b

Thank you! Questions?

Nick Ferenchak ferenchak@unm.edu 505.220.9630

STREETS FOR ALL: PEDESTRIAN & BICYCLIST SAFETY

URBAN LAND INSTITUTE SIP & SOCIAL OCTOBER 1, 2024

Valerie Hermanson, AICP Strategic Program Manager Department of Municipal Development City of Albuquerque

Overview

- What are the issues?
- Where do we begin to address the issues?
 - Vision Zero/Safe system approach
 - Best practices
- Implementation examples
 - Lower cost/high-impact safety measures
 - Louisiana Blvd.
 - East Central road diet/BAT lanes
- What can you do?

What do you think this is?

Pedestrian fatalities 2008 - 2022

Data between 2016-2022:

- New Mexico highest state for pedestrian deaths per 100,000 people in population
- Albuquerque secondhighest metro area for pedestrian deaths per 100,000 people in population

NATIONAL

U.S. pedestrian deaths reach a 40-year high

JUNE 26, 2023 · 5:00 AM ET

U.S. Pedestrian Fatalities, 2019-2022

Pedestrian Fatality Rate Increased Yet Again in 2022

GHSA: https://www.ghsa.org/resources/Pedestrians23

How did we get here?

How did we get here?

How did we get here?

Fatalities in Alcohol-Involved Crashes 2017–2019

get here?

Source: Prepared for the New Mexico Department of Transportation, Planning and Traffic Safety Divisions Under Contract C06093 by the University of New Mexico, Geospatial and Population Studies, Traffic Research Unit (TRU) tru.unm.edu September, 2020 tru@unm.edu.

Fatalities in Alcohol-Involved Crashes 2017–2019

get here? Dist cen

The faster a vehicle is traveling, the more damage is done to a struck pedestrian.

Source: Prepared for the New Mexico Department of Transportation, Planning and Traffic Safety Divisions Under Unit (TRU) tru.unm.edu September, 2020 tru@unm.edu.

Source: City of Chicago

Fatalities in Alcohol-Involved Crashes 2017–2019

Source: Prepared for the New Mexico Department of Transportation, Planning and T Unit (TRU) tru.unm.edu September, 2020 tru@unm.edu.

get here? -

Source: Google maps/Google street view

Vision Zero is an approach to transportation safety that accepts no loss of life or serious injury on our transportation system.

Vision Zero is an approach to transportation safety that accepts no loss of life or serious injury on our transportation system.

A Paradigm Shift: Zero is our goal

The Safe System Approach aims to eliminate fatal and serious injuries for all road users. It's a road map to get to zero.

A Paradigm Shift: Zero is our goal

The Safe System Approach aims to eliminate fatal and serious injuries for all road users. It's a road map to get to zero.

Prioritized High Fatal and Injury Network (HFIN)

41%

of fatalities occurred on these 24 corridors (2015-2019)

16%

of road miles in Albuquerque

90% are Principal Arterials

Safe Roads: Best Practices

Best practices

- Separate different roadway users in space
 - Examples: Bike lanes, buffered bike lanes, separated bike lanes

Safe Roads: Best Practices

Best practices

- Separate different roadway users in space
 - Examples: Bike lanes, buffered bike lanes, separated bike lanes
- Separate different roadway users in time
 - Examples: Leading pedestrian intervals, bike signals, pedestrian hybrid beacons

Safe Roads: Best Practices

Best practices

- Separate different roadway users in space
 - Examples: Bike lanes, buffered bike lanes, separated bike lanes
- Separate different roadway users in time
 - Examples: Leading pedestrian intervals, bike signals, pedestrian hybrid beacons
- Increase attentiveness & awareness
 - Examples: Daylighting, street lighting, flashing beacons

Implementing proven safety countermeasures

Safe Roads: Implementation

*Proven Safety Countermeasure

Since 2021, the City of Albuquerque has completed...

Source: Aaron Sussman Mid-block crossings

- 15 pedestrian hybrid beacons (PHBs)* or rectangular rapid flashing beacons (RRFBs)*
 - Several locations include median refuge islands

Safe Roads: Implementation

*Proven Safety Countermeasure

Since 2021, the City of Albuquerque has completed...

Mid-block crossings

- 15 pedestrian hybrid beacons (PHBs)* or rectangular rapid flashing beacons (RRFBs)*
 - Several locations include median refuge islands

Signal improvements

- 15 locations with Leading Pedestrian Intervals (LPIs)*
- Rest in red
- Pedestrian Activated Warning Signal (PAWs) – in design for Louisiana Blvd. and Central Ave.

Safe Roads: Implementation

*Proven Safety Countermeasure

Since 2021, the City of Albuquerque has completed...

Mid-block crossings

- 15 pedestrian hybrid beacons (PHBs)* or rectangular rapid flashing beacons (RRFBs)*
 - Several locations include median refuge islands

Signal improvements

- 15 locations with Leading Pedestrian Intervals (LPIs)*
- Rest in red
- Pedestrian Activated Warning Signal (PAWs) – in design for Louisiana Blvd. and Central Ave.

Striping

- 6.6 miles+ road diets*
- 35.2 miles+ of bike lanes* (25.8 are buffered)
- 122+ daylighting intersections
- **158+** new or refreshed highvisibility crosswalks*
- 41.9 miles+ narrowing driver lanes

Example: Louisiana Blvd Vision Zero Improvement Project

Louisiana Blvd Vision Zero Improvements -CONSTRUCTION

ROAD DIET*

- Kathryn Ave to Central Ave
 - 5-lane to 4-lane reduction
 - Two-way left turn lane
 - Buffered bike lanes
- Kathryn Ave to Gibson Blvd
 - 5-lane to 2-lane reduction
 - Two-way left turn lane
 - Separated bike lanes (SBL)

Crash Modification Factor (CMF) - using flexible posts in converting a traditional bicycle lane to a SBL can reduce crashes by 50 percent.

*= Proven Safety Countermeasure

Louisiana Blvd Vision Zero Improvement Project

ROAD DIET

- Kathryn Ave to Central Ave
 - 5-lane to 4-lane reduction
 - Two-way left turn lane
 - Buffered bike lanes
- Kathryn Ave to Gibson Blvd
 - 5-lane to 2-lane reduction
 - Two-way left turn lane
 - Buffered bike lanes with vertical separation

PAINT/POSTS

Leading Pedestrian Intervals (LPIs)

- Trumbull
- Southern
- Kathryn
- Give people walking 5-7 second head start to cross the street

FIBER

 Intelligent transportation systems (ITS)

Central Ave. – Louisiana Blvd. to Juan Tabo Blvd.

Road diet with Business Access Transit (BAT) Lanes: Curbside lanes used only by rightturning vehicles and buses. **Provide better access to businesses and help buses move more efficiently through traffic.**

Central Ave. – Louisiana Blvd. to Juan Tabo Blvd.

BUS &

BUSINESS

ACCESS

ONLY

Road diet with Business Access Transit (BAT) Lanes: Curbside lanes used only by rightturning vehicles and buses. **Provide better access to businesses and help buses move more efficiently through traffic.**

RIGHT LANE BENEFITS

- Drivers don't get stuck behind buses
- Turning right at intersections & into driveways is easier because BAT lanes provide better visibility & opportunities to turn
- Travel is faster for vehicles using the general-purpose lanes, as they are no longer delayed by turning vehicles
- Buses can move more freely, leading to a greater opportunity for on-time arrivals

Central Ave. – Louisiana Blvd. to Juan Tabo Blvd.

BUS &

BUSINESS

ACCESS

ONLY

Road diet with Business Access Transit (BAT) Lanes: Curbside lanes used only by rightturning vehicles and buses. **Provide better access to businesses and help buses move more efficiently through traffic.**

RIGHT LANE BENEFITS

- Drivers don't get stuck behind buses
- Turning right at intersections & into driveways is easier because BAT lanes provide better visibility & opportunities to turn
- Travel is faster for vehicles using the general-purpose lanes, as they are no longer delayed by turning vehicles
- Buses can move more freely, leading to a greater opportunity for on-time arrivals

- + TWO NEW MIDBLOCK CROSSINGS with median refuge islands and pedestrian hybrid beacons
- Central Ave. and Britt
- Central Ave and Dorothy

What can you do?

THANK YOU!

Safe speeds: Automated Speed Enforcement (ASE)

Safe Speeds: Automated Speed Enforcement

- 20 total cameras
- Changes in driver behavior
 - Between April 25, 2022 May 26, 2024, 20 cameras saw between a 42% to 89.2% decrease in drivers exceeding the posted speed limit by 10+ miles per hour (mph)
 - 20 cameras saw between a 0.3 mph to 8.3 mph decrease in average driver speed
- Remaining funds go toward Vision Zero traffic safety projects like the Central Ave. road diet/midblock crossings

Safe Speeds: Automated Speed Enforcement

- 20 total cameras
- Changes in driver behavior
 - Between April 25, 2022 May 26, 2024, 20 cameras saw between a 42% to 89.2% decrease in drivers exceeding the posted speed limit by 10+ miles per hour (mph)
 - 20 cameras saw between a 0.3 mph to 8.3 mph decrease in average driver speed
 - Remaining funds go toward Vision Zero traffic safety projects like the Central Ave. road diet/midblock crossings

Reducing speeds even by one mph can result in a 17% decrease in fatal crashes*

*National Association of City Transportation Officials (NACTO). City Limits. American Association of State Highway and Transportation Officials (2010). Highway Safety Manual.

Louisiana Blvd. Mid-block Crossings – IN DESIGN

- Mid-block crossings: pedestrian refuge islands and pedestrian hybrid beacons (PHBs):
 - Between Eastern & Ross
 Between Ross & Anderson
 Between Bell & Zuni

Importance of Speed Management

THE LIKELIHOOD OF FATALITY INCREASES EXPONENTIALLY WITH VEHICLE SPEED³²

ONE

2024 Bikeway and Trail Facilities Plan – Council for final approval soon

To achieve growth in bicycling, bikeway design needs to meet the needs of a broader set of potential bicyclists.

Seniors

People Moving

Goods + Cargo

People Riding Bike Share

People with Disabilities

Source: NACTO

People of Low-Income Color

Riders

Women

Confident **Cyclists**

- Total new or enhanced miles of bikeways: 360
- Total number of proposed enhanced crossings: 256

Mileage of New or Enhanced Bikeways by Facility Type

Facility	2024 City Limits
Bike Boulevard	96.3
Enhanced Bike Route	24.5
Bike Lane	33.7
Buffered Bike Lane	56.6
Separated Bike Lane	52.3
Paved Multi-Use Trail	21.4
Sidepath	74.6
Total	359.6

