

PRESENTATION Livable Buckhead and ULI Class of 2024 May 14

Urban Land Atlanta nstitute

Ramana Koti Sustainable Design Leader

Kenneth Igwe Commercial Real Estate Lender

Charles Zakem Kimley-Horn Civil Engineer

Claire Hansen RangeWater Real Estate Director of Development 01.

PROJECT OBJECTIVES AND TIMELINE

Project vision statement, deliverables and where is fits in LB's long term embodied carbon timeline

- **SURVEY OF THE INDUSTRY** 02.
 - Define key terms and broadly outline the current industry landscape
- **EMBODIED CARBON CASE STUDY** 03. Explanation of our model and our proxy building
- **EMBODIED CARBON ALTERNATIVE MATERIALS FOR REDUCTION** Intro to reduction materials, design techniques and their pricing along with policy recommendations

TABLE OF CONTENT

LCCE: LIFE CYCLE CARBON EMISSION

TWO TYPES:

Embodied Carbon

Operational Carbon

Construction Processes

FACTORS OF LCCE:

Material Selection

Energy Use

Maintenance and Renovation

LCA: LIFE CYCLE ASSESSMENT

EMBODIED CARBON IN BUILDINGS: WITHIN AND OUTSIDE OF LCA'S

WITHIN LCA

OUSTIDE LCA

EPD's: Environmental Product Declarations

STAGES OF AN LCA

APPLICATION IN DIFFERENT PHASES OF AN LCA

IMPORTANT **SOFTWARE TOOLS**

1) Goal and Scope Definition 2) Life Cycle Inventory 3) Life Cycle Impact Assessment 4) Interpretation

As Designed Phase

As Built Phase

One Click LCA Tally **Athena Impact Estimator** SimaPro

Design Phase

ESTABLISHING A BASELINE

PERFORMANCE TARGETS

Agressive Target: 40% Reduction starting in 2025 reaching zero or near- zero buildings by 2040

Less Agressive Target: 10% – 20% reductions by 2030; aim to hit net-zero by 2040/2050

KNOWN WAYS TO ACHIEVE TARGET

- **Material selection**
- **Design optimization**
- **Construction techniques**
- Reuse existing building materials or components
- Use lower carbon replacement materials for renovations

Embodied Carbon Case Study and Proxy Building

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

Embodied Carbon Criteria

Structure Enclosure

•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

Embodied Carbon

373 kgCO2eq/m2 (Baseline Benchmark)

Industry standard practice – 10% better 336 kgCO2eq/m2 (Baseline Benchmark)

> 70% Structure 20% Enclosure 10% Interiors

CARBON LEADERSHIP FORUM

Figure 3: Embodied Carbon per m², of Residential Buildings

SFE=Structure/Foundation/Enclosure, SFEI=Structure/Foundation/Enclosure/Interiors)

University of Washington College of Built Environments Department of Architecture

Los Angeles Based Project

17% 60ksi Steel Rebar Savings

0% 10000psi Concrete Mix Savings 29% 8000psi		
Concrete Mix Savings	5.07	
	3.90	
46% 6000psi		
Concrete Mix Savings	8.88	
	2.41	7
25% 6000psi Shotcrete Mix Savings	12.44	
10% 6000psi Concrete	1.61	
Mix (56 days) Savings	6.23	
24% Total Savings	Refined	

60ksi Steel Rebar

- 80ksi Steel Rebar
- 10000psi Concrete Mix
- 8000psi Concrete Mix
- 6000psi Concrete Mix
- 6000psi Shotcrete Mix
- 4000psi Concrete Mix
- 6000psi Concrete Mix (56 days)

-

				Double G	lass				
	Р	ENR [MJ/FU	[נ		PER [MJ/FU]	GWP [kgCO2eq/FU]		
Materials	Min.	Max.	Ave.	Min.	Max.	Ave.	Min.	Max.	Ave.
Aluminum	993.0	2770.4	1724.2	180.6	540.0	297.6	46.5	146.0	105.0
PVC	825.8	2740.0	1542.3	45.2	334.0	133.4	38.6	113.0	68.4
Steel	1396.8	2710.4	2125.0	127.7	310.2	245.6	85.9	152.5	127.3
Wood	699.0	2550.0	1473.0	534	988.8	814.1	31.8	105.0	55.0

28%

	Baseline	Good	Better	Best
Concrete Embodied Carbon Reduction	0%	12%	18%	24%
Windows Embodied Carbon Reduction	0%	14%	21%	28%

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

ECI in the figure above stands for Embodied Carbon Intensity in kg CO2e/m2

	Baseline	Good	Better	Best
StructureEmbodied Carbon Reduction(70% of the baseline is subject to this)	0%	12%	18%	24%
WindowsEmbodied Carbon Reduction(20% of the baseline is subject to this)	0%	14%	21%	28%
Combined Reduction Potential(100% of the baseline is subject to this)	0%	11%	17%	22%

Embodied Carbon Reduction Analysis Baseline

LEED:

- Conduct an LCA 1pt
- 5% reduction 2pts
- 10% reduction 3pts
- 20% reduction 4pts

'The Top 10 Ways to Reduce Concrete's Carbon Footprint' has the following recommendations:

- Communicate carbon reduction goals
- Ensure good quality control assurance
- Optimize concrete design
- Specify innovative cements
- Specify supplementary cementitious materials
- Specify admixtures
- Set targets for carbon footprint
- Don't limit ingredients
- Sequester carbon dioxide in concrete
- Encourage innovation

Their conclusion reads:

"There is no silver bullet to making concrete with zero carbon footprint. It can be done, but not at the volume and cost demanded by today's building owners. For some concretes (sic) on a project, the carbon reduction might be 90%, others closer to 70%, and still others around 30%. All these reductions lead to concrete with a significantly lower footprint than most concrete projects. If you choose to set carbon footprint targets, this will lead to the greatest reduction, but you cannot expect to meet these targets without implementing these top 10 ways to reduce concrete's carbon footprint."

EMBODIED CARBON REDUCTION STRATEGIES

STEEL

CONCRETE

Recycled North American Steel Efficient Steel Design

Supplementary Cement Materials (SCMs) Efficient Concrete Design

0% PRICE PREMIUM

0% PRICE PREMIUM

INSULATION

Mineral Wool

5% PRICE DISCOUNT

EMBODIED CARBON REDUCTION STRATEGIES

WINDOWS

Reduction of aluminum double glazing windows

5%-10% PRICE PREMIUM

CURTAIN WALLS

Glulam Mullions Reduced Curtain Wall Depth

5% PRICE DISCOUNT

EMBODIED CARBON POLICY

VOLUNTARY LCA PROGRAM AND NEXT STEPS

EMBODIED CARBON CODE AND PROGRAM TYPES

PRESCRIPTIVE

- Typically cap GWP for certain products
- Typically aimed at structure
- Easier to enforce
- May not result in net positive benefit

PERFORMANCE

- More flexible to market changes
- More accurate
- More costly to perform
- More expertise to enforce

Typically LCA-based

PRESCRIPTIVE EMBODIED CARBON POLICY EXAMPLES

Portland Low Carbon Concrete Program

CALGreen Prescriptive Option

Denver Green Code

Marin County Low Carbon Concrete

PERFORMANCE **EMBODIED CARBON** POLICY EXAMPLES

CALGreen Performance Option

LEED v4 Building life-cycle impact reduction credit

Austin Green Building Program (voluntary LCA)

POLICY/PROGRAM RECOMMENDATIONS

Performance-based criteria for flexibility and resiliency Use LEED-compliant standards for performance thresholds

Phased approach

Voluntary LCA Program (based on LEED credit standards)

(Similar to Austin Energy Green Building Program)

Required LCA with **incentives** for high-performance buildings

(LEED Embodied Carbon Credit Standard, 10%) EC reduction similar to CALGreen)

(10% EC reduction required, 20% bonus threshold)

Voluntary LCA with incentives for highperformance buildings

(LEED Embodied Carbon Credit Standard)

Required LCA with **required performance** for all buildings, **incentives** for highestperformance buildings

• •	•	•	•	•	•	•	•	•
								THANK Q&A

YOU

and Discussion